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1. Motivation 

Vision-based object recognition problem can be formulated in several ways. Let's start with the 

simplest definition. Given a camera image or a 3D point cloud acquired by a 3D sensor and a 

suitable object model stored in the computer memory, the vision system must decide whether an 

object of interest is present on the image/point cloud or not. The discussion presented in this paper 

is limited to object recognition in 3D point clouds, with the focus on point clouds acquired by RGB-

D cameras. These cameras provide depth information for each image pixel. Hence, an image 

obtained by a RGB-D camera can be easily transformed into a colored 3D point cloud.  

A more demanding object recognition task is to detect a bounding box in the image/point cloud 

which contains the object of interest. If multiple instances of the object of interest are expected to 

appear in the image/point cloud, then the output of the vision system are multiple bounding boxes. 

Another version of the object recognition problem is the task of assigning every point in the point 

cloud to one instance of the object of interest or to the background.  

If recognition of objects of fixed shape with application in robot manipulation is considered, then 

the vision system must provide accurate information about the object pose, which is then used for 

planning the robot manipulator trajectory.  

Object recognition process is basically a process of comparison of features extracted from an 

observed scene with the features of the object in a model database. Which form of object model will 

be used in a particular object recognition task depends on the specific requirements of that task.   

3D object recognition methods can be classified in two broad classes: (i) local approaches and (ii) 

global approaches. A survey of methods for object recognition in 3D point clouds is given in 

(Cupec, Grbić and Nyarko, 2016). 

Local approaches are mostly based on registration of features of various types. The basic pipeline 

of these approaches which is executed in the online recognition phase consists of the following 

steps:  

1. feature detection; 

2. generating hypotheses from feature matches; 

3. hypothesis evaluation. 

Features which are used in the considered recognition approaches represent geometric elements 

such as a 3D point, a pair of oriented 3D points, a line or a planar surface segment. Each feature is 

assigned a local descriptor representing a vector of values which describe the local neighborhood of 

the feature.  

In the hypothesis generation stage, the features detected in the scene S are matched to the features 

of the same type extracted from all models. Feature matching is performed according to the local 

descriptors assigned to the features. If the descriptor of a scene feature is sufficiently similar to a 

descriptor of a model feature, according to a certain similarity measure, the parameters of these two 

features defining their pose relative to the respective reference frames are used to compute the pose 

of a model reference frame relative to the sensor reference frame. If a single feature match does not 

contain information sufficient for estimating full 6DoF object pose, groups of features are matched, 



FEATURES FOR OBJECT RECOGNITION IN 3D POINT CLOUDS BASED ON PLANAR PATCHES  2 

where geometric relations between the features in a group are used in the matching process together 

with the local descriptors. The object pose computed from a feature match or by matching two 

groups of features represents a hypothesis that this particular object is present in the scene in the 

computed pose.  

Since many features are usually detected in point clouds, a large number of hypotheses are 

generated and only some of them are correct. Therefore, a suitable criterion must be used to decide 

which of the generated hypotheses can be accepted as correct and which should be rejected. This 

final step is referred to herein as hypothesis evaluation. 

Global approaches compute one single descriptor for each object encompassing the whole object 

surface (Aldoma et al., 2012a). The global approach is characterized by a smaller complexity in the 

description and matching stage with respect to local methods, since each surface is characterized by 

one single (or a few for multivariate semi-global features) descriptor. However, global approaches 

are less effective in presence of partial object occlusions and require points in the observed scene to 

be segmented into different clusters, so that descriptors can be computed on each object cluster 

separately (Narayanany and Likhachev, 2016).  

Features. In this paper, local object recognition approaches are considered, which rely on features 

extracted form a scene which are compared to the model features of the same type.  

Desirable properties of features used for object recognition are 

1. A feature must provide a unique reference frame whose pose relative to the object 

reference frame is stable with respect to noise and viewing angle.  

2. The local object shape in the neighborhood of the feature should be distinguishable from 

the local neighborhoods of other features of the same object and features of other objects 

which are expected to appear on the scene.  

The most common features used for object recognition are point features. A point feature consists 

of a keypoint or interest point, which defines the location of the feature in a point cloud and local 

descriptor which describes the local neighborhood of the keypoint. Some of the keypoint detectors 

used for object recognition in 3D point clouds are: 

1. Normal Aligned Radial Feature (NARF) (Steder et al., 2010) and 

2. Intrinsic Shape Signatures (ISS)  (Zhong Y, 2009). 

 

The task of the local descriptor is to detect points on the object surfaces in the scene with unique 

geometric properties in their local neighborhood. Furthermore, a desirable property of a feature is 

that the geometry of its local neighborhood is such that it uniquely defines three orthogonal 

directions, which can be used as a stable feature reference frame (Tombari, 2013).  

Feature reference frame. This reference frame is used in the hypothesis generation stage for 

estimation of the object pose in the scene relative to the scene reference frame. A common approach 

for identification of the feature reference frame is to use the point and surface normal distribution in 

the local neighborhood of the feature's keypoint to define the orientations of the reference frame 

axes (Zhong Y, 2009). There are two main problems with this approach: 
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1. The shape of the object of interest can be such that only a few keypoints with a unique 

reference frame can be detected on its surface. If such object is positioned in a cluttered 

scene, these few keypoints could be occluded. 

2. The uncertainty of the reference frame determined using a small local neighborhood could 

be rather high. This uncertainty is increased by the sensor noise. 

In order to cope with the said problems, we have developed a novel feature, which is based on 

segmentation of the object's surface into planar surface segments. 

2. Segmentation to Planar Surface Segments 

Many segmentation algorithm perform oversegmentation to superpixels or supervoxels as a 

preprocessing step (Gupta, Arbeláez and Malik, 2013). The introduction of a low-level 

preprocessing step to oversegment images into superpixels – relatively small regions whose 

boundaries agree with those of the semantic entities in the scene – has enabled advances in 

segmentation by reducing the number of elements to be labeled from hundreds of thousands, or 

millions, to a just few hundred (Simari, Picciau and De Floriani, 2014). Probably the most popular 

method for oversegmentation of 2D images into superpixels is SLIC (Achanta et al., 2012). The 

method is based on k-means clustering. The same idea is adapted to 3D point clouds by (Papon et 

al., 2013). They designed a method which represents a 3D point cloud by rectangular voxel grid and 

then groups neighboring voxels into supervoxels.  

A drawback of the method proposed in (Papon et al., 2013) is that the size of the obtained 

supervoxels is defined by a user specified parameter, which has to be selected according to 

previously known properties of the scene or objects of interest.  

We developed a method which segments a 3D point cloud into approximately planar surface 

segments, where a user can specify the maximum deviation of points grouped in a segment form a 

plane assigned to this segment. This segmentation has the same underlying principle as the 

segmentation method proposed in (Holz and Behnke, 2014). It is based on region growing and it 

requires a 3D triangular mesh as input. A seed point is randomly selected from the input mesh. The 

region growing procedure is initialized by creating a region consisting of the selected seed point and 

growing this region by adding neighboring points which satisfy the criterion that the point must lie 

on the plane defined by the seed point and its normal within a predefined threshold. After the region 

growing procedure is completed, i.e. if no more points which satisfied the planarity criterion can be 

added to the grown region, a new randomly selected mesh point, which currently isn't assigned to 

any planar segment, is used as the seed for the next region growing process. The advantage of this 

approach in comparison to the method proposed in (Papon et al., 2013) is that the size of the 

obtained segments is determined by the scene geometry. Large planar surfaces in a given scene are 

represented by few large segments, while highly curved surfaces are represented by multiple small 

segments. Another advantage in comparison to (Papon et al., 2013) is that the points of a surfel lie 

on a planar surface within a user specified tolerance.  

In order to create a triangular mesh from an input point cloud, our approach uses the fast mesh 

construction algorithm presented in (Holz and Behnke, 2012), which is included in the Point Cloud 

Library (Rusu and Cousins, 2011). The main difference between our approach and the method 
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presented in (Holz and Behnke, 2014) is that the point cloud segmentation obtained by our 

approach can be easily transformed into a polygonal representation of the given point cloud with 

relatively small number of vertices in comparison to triangular mesh of the same precision. 

However, generating of a polygonal representation from the segmentation obtained by our method 

is not implemented yet. The details of our algorithm are not presented in this paper. The complete 

description of the proposed approach will be published in a journal or conference paper.  

Several examples of segmentations obtained by applying our method to noisy mesh models from 

TUW database (Aldoma et al., 2012b) are shown in Fig. 1. 
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Fig. 1. Examples of planar surface segments obtained by applying the proposed method to noisy 3D models. Each 

segment is displayed with different color. 
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3. Object Recognition Problem 

Let's consider the case where an object of interest is represented by a 3D point cloud, i.e. a set of 

points  1 2, , , mM P P P   . Let the position of each point 
jP  relative to the model reference 

frame SM be defined by vector 3M

j
 p . Let us now consider the task of finding the object of 

interest in a scene represented by a 3D point cloud. The task of finding the object of interest in the 

considered scene can be formulated as identifying a subset of the scene point cloud which 

resembles the object model point cloud according to a particular similarity criterion. More 

precisely, we search for the transformation between the model reference frame SM and the scene 

reference frame SC which maximizes the number of the transformed model points in the close 

vicinity of the scene points. Let  1 2, , , cC P P P  be the scene point cloud. The considered 

problem can be formulated as maximization of the following matching score  

     
1, ,

1

, min
m

C C C C M C

M M i M j M
i c

j

r




     R t 1 p R p t  (1) 

where C

MR  and C

Mt  represent the rotation matrix and translation vector defining the 

transformation between SM and SC respectively, C

ip  is a vector representing the position of point 

iP C  relative to SC, r is a threshold and 1(condition) is the function which returns value 1 if 

condition is satisfied and 0 otherwise. If transformation  ,C C

M MR t  is found for which 

 ,C C

M M R t  exceeds a predefined threshold, this indicates that the object of interest is present in 

the considered scene and that  ,C C

M MR t  represents a good estimate of its pose relative to the 

scene reference frame SC. 

The search for the transformation which maximizes matching score (1) can be made more efficient 

by subsampling the model point cloud, i.e. by representing the model with a reduced number of 

points and assigning each sample point the local surface normal. Let each point 
jP M  be assigned 

a unit vector M

j
n  representing the local object surface normal at that point, i.e. the vector 

orthogonal to the object surface in the close vicinity of the point 
jP . A pair  ,M M

j j
 p n  can be 

regarded as an oriented point. Since oriented points are more informative than vectors M

j
p  alone, a 

smaller number of oriented points can be used to describe the shape of an object.  

By assigning surface normal to scene points, a set of oriented 3D points  ,C C

i ip n  is obtained. This 

additional surface normal information can be used in the object recognition process by replacing the 

matching score (1) with the following matching score 

       
1,...,

1

, max
m

C C C C M C C T C M

M M i M j M i M j n
i c

j

r 




          R t 1 p R p t n R n , (2) 

where n is a predefined threshold, and searching for transformation  ,C C

M MR t  which maximizes 

matching score (2). 



FEATURES FOR OBJECT RECOGNITION IN 3D POINT CLOUDS BASED ON PLANAR PATCHES  7 

4. Features for Object Recognition Based on Planar Surface Segments 

The most common features used for object recognition are point features. We designed a novel 

feature, which is based on planar surface segments discussed in Section 2. Our feature detection 

method provides keypoints with stable reference frames. The proposed feature is named Plane/Line 

Intersection Point (PLIP). The feature detection method considered in this paper takes as input a 3D 

triangular mesh and produces a set of PLIPs with assigned reference frames. The triangular mesh 

can be obtained from a point cloud using one of the available methods. The details of our approach 

are not presented in this paper. The complete description of the proposed approach will be 

published in a journal or conference paper. In this section, the analysis of the stability of the PLIP 

reference frame (RF) and its applicability in object recognition is presented.  

The applicability of PLIP for object recognition can be evaluated by detecting PLIPs in model and 

scene point clouds and computing transformations which align model PLIPs with scene PLIPs. The 

PLIP method is applicable for object recognition if at least one of the obtained transformations is 

correct. The correctness of the transformations computed by PLIP alignment can be evaluated by 

comparing them to the known ground truth object poses.   

Let's consider a PLIP detected on the model mesh, with the frame SF' whose origin is identical to the 

PLIP. Let the position of the origin of SF' relative to the model reference frame SM be represented by 

vector 3M

F t  and its orientation by rotation matrix  SO 3M

FR . Assuming that a PLIP 

detected on the surface of the object of interest placed on a scene has the same position and 

orientation relative to this object as one of the PLIPs detected on the surface of the object model, 

the alignment of the reference frame SF of the scene PLIP and the reference frame SF' of the model 

PLIP result in the object pose relative to the scene reference frame SC. In this case, the object pose 

can be computed by 

 C C M T

M F F  T T T  , (3) 

where B

AT  represents the homogenous transform matrix corresponding to the pose of a reference 

frame SA relative to a reference frame SA defined by 

 
0 0 0 1

B B

A AB

A

 
  
  

R t
T . 

Matrix C

FT  in (3) represents the pose of SF relative to SC. 

PLIPs can be used in combination with existing local descriptors such as SHOT (Tombari, Salti and 

Di Stefano, 2010), FPFH (Rusu, Blodow and Beetz, 2009), spin image (Johnson and Hebert, 1999) 

etc. In our future research, we plan to develop a hypothesis generation approach which is based on 

the matching score (2). In order to evaluate the discriminating power of the considered approach, 

we performed experiments in which object pose hypotheses are generated by PLIP alignment and 

evaluated using a descriptor based on the matching score (2).  

The descriptor used in this paper is a set of oriented points, i.e. randomly selected vertices 
jP M

with assigned normals. It can be defined as set       ,1 ,1 ,2 ,2 , ,, , , , , ,d d d d d n d nD  p n p n p n , 
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where pd,l and nd,l are the position vector and normal of a randomly selected model point 

represented with respect to the reference frame SF', i.e. for each l there is j  {1, 2, …, m} such that 

  ,

M T M M

d l F j F 
 p R p t  , 

 ,

M T M

d l F j
n R n . 

The discussed descriptor is formed from model points which are relatively close to the origin of SF', 

i.e. for 1  l  n 

 ,d l Frp , 

where rF is a distance threshold. The described descriptor is referred to in this paper as Random 

Oriented Point (ROP) descriptor. 

An object recognition procedure based on PLIP feature detector and the proposed descriptor is 

given in Algorithm 1. In this algorithm, the object of interest is represented by a single PLIP feature 

and the corresponding ROP descriptor. The algorithm returns a hypothesis list. Each hypothesis H 

in that list represents a pair  ,, ,C C

M F i sT T , where 
C
TM is the pose of the object in the scene, 

C
TF,i is 

the pose of the PLIP RF and s is a matching score analogous to (2). The hypothesis on the top of the 

list can be considered as the most probable one.  

Algorithm 1 Object recognition based on PLIP and ROP descriptor 

Input: depth image acquired by a 3D sensor, r, n  

model PLIP F' represented by transformation matrix 
M

TF' and descriptor   , ,,d l d lD  p n , l = 1, 2, …, n 

Output: list of hypotheses H sorted according to matching score s 

1 : Convert depth image into a triangular mesh. 

2 : Detect PLIPs in the scene mesh. Each scene PLIP Fi is assigned a transformation matrix 
C
TF,i. 

3 : Create empty hypothesis list. 

4 : For each detected scene PLIP 

5 :  s  0 

6 :  For l  1 to n 

7 :   
, , ,

C C

F i d l F i
  p R p t  

8 :   
, ,

C

F i d l
 n R n  

9 :   If there is a scene point p with normal n such that r p p and T

n n n  then 

10 :    s  s + 1 

11 :   end if 

12 :  end for 

13 :  
,

C C M T

M F i F  T T T  

14 :   ,, ,C C

i M F iH s T T  

15 :  Add Hi to the hypothesis list 

16 : end for 

17 : Sort hypothesis list according to s in descending order. 

18 : return hypothesis list 
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4.1. Reference Frame Stability 

In order to test the stability of PLIP RF with respect to the measurement noise, we performed an 

experiment with a 3D object model taken from the TUW database used in (Aldoma et al., 2012b). 

The object used in the discussed experiment is a bottle shown in Fig. 2. The original mesh is 

uniformly sampled and normals are estimated by MeshLab software (MeshLab). A single PLIP is 

extracted from the model mesh, a ROP descriptor consisting of 1000 oriented points is generated 

and this feature is used as the model feature. Then, Gaussian noise with standard deviation of 1 mm 

is superimposed on the same model mesh and the resulting mesh is used as a scene. An example of 

noisy model obtained by superimposing Gaussian noise to the model in Fig. 2 is shown in the top 

left image of Fig. 1. 

 

Fig. 2. 3D mesh from TUW database used as a model of an object of interest. 

Furthermore, the normals assigned to mesh vertices are corrupted by adding a 3D vector sampled 

from Gaussian distribution with standard deviation of 0.05 and normalizing the obtained vector to 

unit vector. The superimposed noise causes the applied segmentation algorithm to generate different 

segments from those obtained by applying the same segmentation approach to the original mesh. 

The purpose of this noise addition is to simulate the measurement noise which is commonly present 

in point clouds acquired by a real sensor and to test the robustness of the PLIP detection method to 

the measurement noise. The stability of the PLIP RF is evaluated by measuring the deviation of the 

PLIP RF obtained after the noise addition to the original PLIP RF. This deviation is measured by 

the Euclidean distance between the reference frame origins and the rotation angle needed to align 

the axes of the two reference frames.  

The experiment is performed by adding noise to the given model, detecting PLIPs in that noisy 

model and applying Algorithm 1 to that model. The parameters of this algorithm were set to the 

following values: r = 10 mm, n = 0.866, rF = 200 mm. The highest ranked hypothesis from the list 

generated by this algorithm is taken as the solution. The pose of the PLIP RF SF corresponding to 

this hypothesis in the noisy model relative to the pose of the PLIP RF SF' in the original model is 

computed by 

 
, ,

F M T C

F i F F i



 T T T . 
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The position error is computed by 

  F

t Fe


 t . 

The orientation error is computed by determining the axis and the angle for which SF' must be 

rotated about this axis to align with SF. The histogram of the position and orientation error resulting 

from 110 experiments are shown in Fig. 3. Since the noise added to the original model is generated 

by random sampling from Gaussian distribution, a different model is obtained in each experiment. 

 

Fig. 3. Histograms of the position and orientation error recorded from 100 experiments of matching a PLIP extracted 

from the model shown in Fig. 2 to the PLIPs extracted from the same model corrupted by noise. 

The normalized cumulative histograms
1
 of the position and orientation error are shown in Fig. 4. 

 

Fig. 4. Normalized cumulative histograms of the position and orientation error recorded from 110 experiments of 

matching a PLIP extracted from the model shown in Fig. 2 to the PLIPs extracted from the same model 

corrupted by noise. 

In 95% experiments the position error was below 14 mm and the orientation error was below 16 in 

the same percentage of experiments. The results of four experiments were outliers, i.e. the cases 

where the PLIP RF of the highest ranked hypothesis differ for almost 180 from the model PLIP 

RF. 

                                                 
1
 A normalized cumulative histogram is a data representation where the horizontal axis corresponds to values of a 

measured variable x and the vertical axis represents the percentage of measurements which are  x. 
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4.2. Precision and Recall 

The combination of PLIP feature detector and ROP descriptor was evaluated by experiments in 

which Algorithm 1 was applied to a set of 23 models from TUW database, where all these models 

are matched to the reference model shown in Fig. 2, which was also used in the experiment 

described in Section 4.1. Analogously to the experiment described in Section 4.1, a single PLIP 

with its ROP descriptor is used to describe the reference model. The considered models are 

corrupted by Gaussian noise in the same way as in Section 4.1. From each of 22 models, 5 noisy 

models were generated, while for the reference model 110 noisy models are generated. Hence, the 

total of 220 noisy models was generated, where half of them represent the object of interest, while 

the others represent other objects from the TUW database. Algorithm 1 returns a list of hypotheses, 

where each hypothesis is assigned a matching score. The purpose of the experiment reported in this 

section is to determine the discriminative power of the combination of PLIP feature detector and 

ROP descriptor, i.e. to determine if there is a threshold for matching score which separates the 

object of interest from other objects. The results of Algorithm 1 are categorized according to a 

given threshold  in four sets: 

 true positives (TP): noisy models of the object of interest for which the highest match score 

is   ; 

 false negatives (FN): noisy models of the object of interest for which the highest match 

score is <  ; 

 false positives (FP): noisy models of other objects for which the highest match score is   ; 

 true negatives (TN): noisy models of other objects for which the highest match score is <  . 

The precision is computed by 

  
TP

PR
TP FP




, 

and recall by 

 
TP

RC
TP FN




. 

By computing precision and recall for different values of the threshold  precision-recall curves are 

obtained. In order to investigate how the discriminating power of the ROP descriptor depends on its 

size, we computed precision-recall curves for 5 different descriptor sizes, where descriptor size 

corresponds to the number of oriented points used to build the descriptor: 1000, 400, 150, 50 and 

20. The resulting precision-recall curves are shown in Fig. 5. 

Values of the threshold  for which 100% precision is achieved as well as the values for which 

100% recall is achieved are shown in Table 1. It can be concluded that for descriptor sizes 1000, 

400 and 50 there is an interval of threshold values which clearly separate the object of interest from 

the other objects.  

It should be noted that this analysis is performed on synthetically created meshes, which represent 

complete object shapes. In reality, however, objects are only partially visible and often occluded by 
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other objects. Nevertheless, the presented analysis demonstrates the potential of the investigated 

approach.  

Table 1. Values of the threshold  for which 100% precision and 100% recall is achieved. 

Descriptor size 100% precision 100% recall 

1000  703  761 

400  287  298 

150  109  99 

50  37  37 

20  16  15 

 

 

Fig. 5. Precision-recall curves for different descriptor sizes: 1000, 400, 50 (red), 150 (green) and 20 (blue). 
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