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1. Segmentation to Objects  

In (Richtsfeld et al., 2012; Richtsfeld et al., 2014), an approach for segmenting a RGB-D image 

into object based on SVM classifier is proposed. The input RGB-D image is first segmented into 

planar segments and smooth surfaces represented by NURBS. The following relations are defined 

between the segments: 

rcu – mean curvature along 2D patch border, 

rdi – mean distance along 2D patch border, 

rvdi – variance of distance along 2D patch border, 

rcb – difference of color along 2D patch border, 

rch – difference of patch colour, 

rtr – difference of patch texture, 

rga – gabor filter match, 

rfou – fourier filter match, 

rcu3 – curvature along 3D patch border, 

rdi3 – distance along 3D patch border, 

rnm – difference of mean surface normals direction, 

rnv – difference of variance of normals direction, 

rac – mean angle of normals of nearest contour points, 

rdn – mean normal distance of nearest contour points, 

rmd – minimum distance between patch borders, 

rrs – relative patch size difference. 

The graph is defined graph, where patches represent nodes and relations represent edges. The 

parameters describing the aforementioned relations are computed for pairs of segments and vectors 

composed of these parameters are assigned to the graph edges, where some of these relations are 

included in vectors assigned to the edges connecting neighborihg segments, and some of them are 

included in vectors assigned to the edges connecting non-neighborihg segments. The graph is fully 

connected, as we defined relations between all surface neighbors, as well as all non-neighbouring 

surface patches. The introduced relation vectors are used in the training phase to train the two SVM 

using a hand-annotated set of depth images. The applied SVM provides the probability that two 

segments connected by a particular relation belong to the same object. The graph segmentation 

approach proposed in (Felzenszwalb and Huttenlocher, 2004) is applied to segment the graph using 

the probability values from the SVMs as the pairwise energy terms. The approach is evaluated 

using OSD (See Section 7). The experimental analysis show that the proposed method results in 

rather high undersegmentation. The source code of the proposed method is made publically 

available by the authors at http://www.acin.tuwien.ac.at/?id=316. 

In (Stein et al., 2014), a method for segmentation of point clouds to locally convex surfaces is 

proposed. The method is named Locally Convex Connected Patches  (LCCP). The algorithm begins 

by oversegmenting the input point cloud into supervoxels using VCCS (Papon et al., 2013) and 

creating supervoxel adjacency graph, whose nodes correspond to supervoxels and edges represent 

neighboring relations between supervoxels. Edges in the graph are then classified as either convex 

or concave. Region growing is employed to identify locally convex connected subgraphs, which 

represent the object parts. The method is evaluated using OSD (See Section 7), where it is applied 
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to segment the scenes into objects. The approach is also tested on the datased created by the 

authors, where it is applied to segment the scenes to object parts. Although the proposed method is 

rather simple, the experimental analysis showed that it has a comparable performance to the method 

proposed in (Richtsfeld et al., 2012). However, a disadvantage of the proposed approach is that it 

oversegments hollow objects such as bowls, cups etc. 

In (Ückermann, Haschke and Ritter, 2012), a real-time algorithm that segments unstructured and 

highly cluttered scenes is presented. The algorithm robustly separates objects of unknown shape in 

congested scenes of stacked and partially occluded objects. The model-free approach finds smooth 

surface patches, using a depth image, which are subsequently combined to form highly probable 

object hypotheses. The real-time capabilities and the quality of the algorithm are evaluated on a 

benchmark database. An autonomous grasping experiment with a Shadow Robot Hand, which 

employs the estimated shape and pose of objects provided by the algorithm, in a task in which it 

cleans a table is reported. 

In a real scene, most pixels at the boundary of an object are at depth discontinuities. But there is a 

portion of an object boundary that touches the surface it is resting on and does not have any depth 

discontinuity across it. This portion of the object boundary is referred to as contact boundary. A 

“simple” object is defined as a compact region enclosed by depth and/or contact boundary in the 

scene. In (Mishra, Aloimonos and Fah, 2009), a fixation-based segmentation framework is 

proposed that segments a region given a point anywhere inside it. This framework is used in 

(Mishra, Shrivastava and Aloimonos, 2012) to extract all the “simple” objects in a RGB-D image. 

The original framework is modified to include a fixation strategy to automatically select points 

inside the “simple” objects and a post-segmentation process to select only the regions 

corresponding to the “simple” objects in the scene. A novel characteristic of the approach is the 

incorporation of border ownership, i.e, the knowledge about the object side of a boundary pixel. 

The procedure is tested on a publicly available RGB-D dataset (Lai et al., 2011) with results 

showing that the proposed method successfully extracts 91:4% of all objects in the dataset. 

In (Gupta, Arbeláez and Malik, 2013) a segmentation algorithm based on Support Vector 

Machine (SVM) classifier is presented. First, contours are detected using color and depth 

information. Then, a hierarchical grouping of the initial segments is performed. Contour detection is 

formulated as a binary pixel classification problem, where the goal is to separate contour from non-

contour pixels. A disk centered at each image location is split into two halves at pre-defined 

orientations and the features in the two disk-halves for each orientation are compared. The features 

used for this task are color features proposed in (Arbeláez et al., 2011) and the following geometric 

features: depth, depth gradient, which identifies the presence of a discontinuity in depth, a convex 

normal gradient, which captures if the surface bends-out at a given point in a given direction, and a 

concave normal gradient, capturing if the surface bends-in. SVM classifiers are learnt for each 

orientation channel independently and their final outputs is combined. A combined gradient is 

computed by considering the average of all local contour cues in each orientation and taking the 

maximum response across orientations. The watershed transform of the combined gradient is 

computed and all pixels on the watershed lines are declared as possible contour locations. In the 

training phase, the labels from ground-truth manual annotations are transferred to the candidate 

locations for each orientation channel independently. First, the ground-truth contours in a given 

orientation are identified, and then the candidate contour pixels in the same orientation within a 

distance tolerance are declared as positives. The remaining candidates in the same orientation are 
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declared negatives. SVMs with additive kernels (Maji, Berg and Malik, 2013), which allow learning 

nonlinear decision boundaries with an efficiency close to linear SVMs are used as classifiers, and 

their probabilistic output is used as the strength of the oriented contour detectors. Finally, generic 

machinery proposed in (Arbeláez et al., 2011) is used to construct a hierarchy of segmentations, by 

merging regions of the initial over-segmentation based on the average strength of the oriented 

contour detectors. Planar surfaces which are not represented by connected sets in the RGB-D image 

due to occlusion are grouped by a greedy algorithm which merges superpixels into bigger more 

complete regions, based on the agreement among the parametric geometric fits, and re-estimates the 

geometric model. The following measures of the agreement are used: (i) orientation (angle between 

normals to planar approximation to the two superpixels) and (ii) residual error (symmetrized 

average distance between points on one superpixel from the plane defined by the other superpixel). 

A linear function of these two features is used to determine which superpixels to merge. As an 

output of this greedy merging, a set of nonoverlapping regions which consists of both long and 

short range completions of the base superpixels is obtained. The performance of the proposed 

segmentation approach is evaluated using the standard benchmarks of the Berkeley Segmentation 

Dataset (Arbeláez et al., 2011): Precision-Recall on boundaries and Ground truth Covering of 

regions as well as using NYUD2 dataset. The Matlab code of the proposed algorithm is available at 

http://www.cs.berkeley.edu/~sgupta/ 

Symmetry can be a potentially important cue in determining whether two bodies represent the same 

object. An approach to detect symmetries is proposed in (Mitra, Guibas and Pauly, 2006).  

In (Karpathy, Miller and Fei-Fei, 2013), an algorithm which decomposes the scene into a set of 

candidate mesh segments and then ranks each segment according to its ”objectness” – a quality that 

distinguishes objects from clutter. To partition a scene mesh into segments, the mesh is treated as a 

graph and a graph based segmentation is performed using the algorithm proposed by (Felzenszwalb 

and Huttenlocher, 2004). Five intrinsic shape measures: compactness, symmetry, smoothness and 

local and global convexity as well as a recurrence measure (presence of similar objects in other 

scenes) are proposed as "objectness" measures. Compactness is computed as the ratio of the total 

surface area of the segment’s mesh to the surface area of its smallest bounding sphere. Symmetry is 

computed by reflect the segment along a principal axis and measure the overlap between the 

original segment and its reflection. Smoothness is computed as the average of a smoothness 

measure computed for each point averaged over all points in a segment. The smoothness measure 

for a point is computed as entropy of the distribution of the angles of neighboring points projected 

onto the plane defined by the query point and its normal. Local convexity is computed as the 

percentage of convex edges between adjacent mesh polygons. Global convexity is computed as 

average distance from a point on the object to the closest point on the convex hull. Recurrence is 

computed as the average distance to the top 10 most similar segments in other scenes. To retrieve 

the most similar segments to a given query segment, all segments within 25% of extent along 

principal directions in size are considered and the euclidean distance between their normalized 

shape measures are computed. Each measure is normalized to be zero mean and unit variance 

during the retrieval. Several options for combining the proposed measures into one objectness score 

are considered: Simple averaging, Naïve Bayes, Linear SVM, RBF Kernel SVM, and Nearest 

Neighbor. Ground truth training labels are obtained by manually annotating all extracted segments 

as being an object or not. 

http://www.cs.berkeley.edu/~sgupta/
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In (Hickson et al., 2014), an efficient and scalable algorithm for segmenting RGBD videos by 

combining depth, color, and temporal information using a multistage, hierarchical graph-based 

approach is presented. The authors in their paper introduce the term Toxels, i.e., temporal voxels 

The method uses measurements such as color, spatial coordinates, and RGBD optical flow to build 

a hierarchical region tree for each sequence of n frames (they use n = 8), which are then 

sequentially matched to produce long-term continuity of region identities throughout the sequence. 

This avoids limitations on the length of the video or on the amount of memory needed due to the 

high volume of data. 

The approach involves four main steps: 

1. A graph-based segmentation of 8 consecutive frames using the depth and motion information is 

performed.  

2. An over-segmentation of the frames is done using color and motion information while 

respecting depth boundaries.  

3. Histograms of the resulting regions are used to build a hierarchical segmentation of the 

spatiotemporal volume represented as a dendrogram, which can then yield a particular 

segmentation depending on the desired segmentation level output.  

4. The final step performs a bipartite graph matching with the 8 previous frames with 4 frames 

overlapping to enforce the consistency of region identities over time. 

The primary contributions are:  

(1) A robust and scalable, RBGD video segmentation framework for streaming data.  

(2) A streaming method that maintains temporal consistency and can be run on a robot or on videos 

of indefinite length.  

(3) An efficient framework that runs at 0.8 fps but can be downsized to run pairwise in near real-

time at 15 fps.  

(4) A nonlinear multistage method to segment color and depth that enforces that regions never 

merge over depth boundaries despite color similarities.  

(5) The ability to segment and maintain temporal coherence with camera movement and object 

movement.  

The code and data are publicly available at the paper web page. 

While most of work in the field of point cloud segmentation mainly considers decision making and 

visual processing as two separate tasks, the authors in (Pajarinen and Kyrki, 2015) argue that the 

inherent uncertainty in object segmentation requires an integrated approach that chooses the best 

decision over all possible segmentations. The proposed approach computed the action a which 

maximises the expected utility 

    * arg max ,
a

a P U a 
h

h h , 

where utility U(h; a) is a utility function and P(h) is a probability distribution over object 

compositions. The probability distribution P(h) is approximated by a particle representation, which 

is generated by a Markov chain Monte Carlo (MCMC) procedure. The input RGB-D image is 

oversegmented and possible scene interpretations are restricted to only those hypotheses, where 

objects consist of the segments obtained by the oversegmentation. Every Markov chain state 

represents a discrete combination of binary variables, each variable denoting whether two segments 

are directly connected, i.e. whether they belong to the same object. The Markov chain state are 

sampled according to the prior probabilities that two segments belong to the same object, which are 
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computed by the SVM classification proposed in (Richtsfeld et al., 2014). In the experimental 

evaluation, the proposed approach is applied to the task of moving Lego bricks and to compared to 

(Richtsfeld et al., 2014).  

In (Gupta et al., 2014), an integrated system for scene understanding from RGB-D images is 

presented. The proposed approach represents a generalization of the system for object detection in 

RGB images, called R-CNN, proposed in (Girshick et al., 2014), by making effective use of the 

additional signal – depth. The contour detection is performed by a combination of two approaches: 

features from (Gupta, Arbeláez and Malik, 2013) and learning framework from (Dollár and Zitnick, 

2013). The contour detection approach uses normal gradients and geocentric pose (a per pixel 

height above ground and angle with gravity) and an RGB edge detector. Object proposal represents 

a generalization of Multiscale Combinatorial Grouping to RGB-D images which proposes a pool of 

candidates for potential objects. R-CNN starts with a set of bounding box proposals, computes 

features on each proposal using CNN and classifies each proposal as being target object class or not 

with a linear SVM. The CNN is trained in two stages: first, pretraining it on a large set of labeled 

images with an image classification objective, and then finetuning it on a much smaller detection 

dataset with a detection objective. The depth image is encoded with three channels at each pixel: 

horizontal disparity, height above ground, and the angle the pixel’s local surface normal makes with 

the inferred gravity direction. The CNN architecture proposed in (Krizhevsky, Sutskever and 

Hinton, 2012) is used, which is trained on NYUD2 dataset (see Section 7). The problem was that 

NYUD2 dataset is about one order of magnitude smaller than the PASCAL VOC dataset, which is 

used to train CNN in (Krizhevsky, Sutskever and Hinton, 2012). Hence, more data for training hat 

to be generated and a finetuning of the network had to be performed.  

In (Beale, Iravani and Hall, 2011), a segmentation method is proposed, which segments a 2D 

image sequence into objects using information about the motion of the robot which moves objects 

and observes their visual feedback. 

2. Segmentation into Primitives 

In (Schnabel, Wahl and Klein, 2007), an approach for segmentation of point clouds into planes, 

spheres, cylinders, cones and tori is presented. The method is based on RANSAC. The proposed 

algorithm is an iterative procedure, where in each iteration the primitive with maximal score is 

searched using the RANSAC paradigm. New shape candidates are generated by randomly sampling 

minimal subsets of the input point cloud using a novel hierarchically structured sampling strategy. 

Candidates of all considered shape types are generated for every minimal set and all candidates are 

collected in a candidate set. After new candidates have been generated, the one with the highest 

score is identified using a novel lazy score evaluation scheme, which is designed to reduce the 

computational cost. The best candidate is only accepted if, given the size of the selected candidate 

(number of points) and the number of drawn candidates, the estimated probability that no better 

candidate was overlooked during sampling is high enough. If a candidate is accepted, the points, 

which are inliers for that candidate, are removed from the point cloud and all candidates which have 

common points with the selected candidate are deleted from the candidate set. The algorithm 

terminates as soon as the estimated probability that all relevant primitives are already detected 

becomes large enough. 
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In (Schmitt and Chen, 1991), an approach for creating a triangular mesh from depth image is 

proposed. The algorithm consists of a recursive Delaunay triangulation method followed by region 

merging. The algorithm starts by representing the entire depth image by two triangles whose 

vertices are the corners of the image. For each triangle, the point with the maximum distance to the 

plane defined by the triangle vertices is identified. If this distance is greater than a predefined 

threshold the triangle is split into smaller triangles whose vertices are the vertices of the original 

triangle and the maximum distance point.  After that, the triangulation is modified in order to obtain 

a Delaunay triangulation. This procedure is recursively repeated for all triangles until all a 

triangular mesh is obtained, such that all points of the input depth image lie on a mesh triangle 

within the user specified threshold. Finally, a merging procedure based on region growing is 

applied to merge the triangles in planar segments.  

In (Cupec, Nyarko and Filko, 2011), a mesh segmentation approach is proposed, which segments 

a triangular mesh created from a depth image by the method proposed in (Schmitt and Chen, 1991) 

into approximately convex surfaces. Analogously to (Schmitt and Chen, 1991), the method 

performs grouping of mesh triangles by a region growing procedure, but using convexity criterion 

instead of planarity criterion.  

The approach proposed in (Garland, Willmott and Heckbert, 2001) performs a hierarchical 

segmentation of a triangular mesh according to a planarity criterion. The proposed algorithm 

produces a binary tree where each node, except the leaf nodes, represents a segment which is the 

union of two segments corresponding to its child nodes. The root node is the entire mesh. The 

procedure starts with a triangular mesh, where each triangle represents an initial segment. The 

algorithm proceeds by merging two neighboring segments with the minimum merging cost. The 

merging cost is the integral L
2
 distance of the vertices of the triangles grouped in the merged 

segments from the total least squares plane.  

In (Attene et al., 2008), a mesh segmentation approach is proposed, which performs hierarchical 

segmentation analogously to (Garland, Willmott and Heckbert, 2001), but using as the cost a 

measure of concavity of the segment obtained by merging of neighboring segments.  

In (Attene, Falcidieno and Spagnuolo, 2006), a similar approach is used to segment a mesh into 

planes, spheres and cylinders. 

In (Reisner-Kollmann and Maierhofer, 2012), a method for segmentation of multiple registered 

depth images into planes, cylinders, spheres and cones is proposed. The input to the algorithm are 

multiple depth images aligned to each other, e.g. with Iterative Closest Points (ICP) algorithm (Besl 

and McKay, 1992). The central data structure for the proposed algorithm is a sample point graph 

which is formed from a subset of points sampled from all input frames. Whenever a new frame is 

added, the sample graph has to be updated to include newly captured areas. The point cloud is 

sampled such that the average distance between neighboring points is approximately equal to a user 

defined parameter, which adjusts the number of node in the graph and provides a tradeoff between 

accuracy and computational time. The algorithm performs an optimization procedure consisting of 

three parts: (i) detecting new shapes, (ii) optimizing assignment of points to shapes and (iii) 

optimizing shapes, which are repeated until convergence. Shape detection is performed by the 

RANSAC algorithm proposed in (Schnabel, Wahl and Klein, 2007). Assignment of points to shapes 

is accomplished by graph cuts (Boykov and Jolly, 2001) which optimizes the cost function 
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consisting of a term which penalizes the points and the shapes and a term which favors assigning 

neighboring points to the same shape. After the set of assigned points has changed, a refitting step is 

applied. The geometric error of the shapes is optimized with weighted least-squares. Shapes which 

have no or only very few points assigned are deleted. 

In (Holz and Behnke, 2014), a method for segmentation of depth images into planes, spheres and 

cylinders is proposed. The method is based on region growing. A seed point is randomly selected 

from the input depth image. The region growing procedure is initialized by creating a region 

consisting of the selected seed point and growing this region by adding neighboring points which 

satisfy a particular criterion. For planar segments, this criterion is that the point must lie on the 

plane defined by the seed point and its normal within a predefined threshold. In addition to planar 

segments, smooth surfaces are also detected by region growing, where the growing criterion is that 

the candidate point must be similar to the seed point normal. For every locally smooth segment, the 

proposed algorithm tries to find the geometric primitive that best explains the underlying point set. 

RANSAC (Fischler and Bolles, 1981) is used to find the best sphere and cylinder model. The search 

for sphere and cylinder model is performed only if the computed planar model does not fully 

explain the segment. 

In (Rabbani, van den Heuvel and Vosselman, 2006), a method for segmentation of point clouds 

to smooth surfaces is proposed. The method relies on the residual in the plane fitting as a measure 

for surface curvature. The plane is fitted to a local neighborhood of every point in the input point 

cloud and the residual w.r.t. this plane is assigned to each point. The point cloud is then segmented 

by a region growing procedure. This procedure starts by selecting the point with the minimum 

residual as the current seed. The region is grown by adding the neighboring points of the current 

seed which satisfy the smoothness condition and whose residuals are less than a predefined 

threshold. The smoothness condition is that the angle between the normal of the candidate point and 

the neighboring seed point is smaller than a predefined threshold.  

In (Rusu et al., 2009), a method for point cloud segmentation into primitives and scene completion 

is proposed. It is assumed that the direction of the gravity axis is known. The subset of the input 

point cloud containing points whose normals are approximatively parallel with the gravity axis, is 

segmented using Euclidean clustering. For every cluster, a sample consensus estimator is used to 

find the best planar model. For every set of point inliers corresponding to the planar model, a 

bounding polygon is computed representing the estimated table bounds. All Euclidean point clusters 

supported by the table model (i.e. sitting on the table, and within the polygonal bounds) are 

extracted. For each segmented point cluster search for 3D primitive geometric surfaces is performed 

using Randomized M-Estimator Sample Consensus – RMSAC (available within the Point Cloud 

Library (PCL)) is applied with a focus on 3D primitive geometric shapes such as planes, cylinders, 

spheres and cones. Each candidate primitive shape is scored according to the number of inliers. The 

efficient inlier counting is performed by using octree structure representing the input point cloud. A 

branch of the octree is represented by a box and efficient methods for detection of box-plane, box-

cylinder, box-sphere and box-cone intersection are applied. If a box representing a octree branch 

does not intersect with the candidate primitive, all points contained in this box are excluded from 

the further inlier search. For the best primitive shape candidate, non-linear optimization of the shape 

parameters is performed using the Levenberg-Marquard algorithm. The geometric shape 

coefficients are then used to reconstruct missing data. Residual points are resampled and 
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triangulated, to create smooth decoupled surfaces that can be manipulated. Finally, the resultant 

hybrid shape-modelis built by concatenating the shape model with the surface model. 

In (Lakani et al., 2014), a method for segmenting of 3D objects into primitives: cone, cylinder, 

cube and sphere is presented. The primitives are detected in the low-curvature regions in the object. 

The proposed algorithm has two steps. In the first step, low-curvature regions are detected. Then, in 

each region, primitive shapes are estimated. The input point cloud is oversegmented into 

supervoxels using the method proposed in (Papon et al., 2013). The local surface curvature shape is 

identified by HK algorithm, which categorizes the surface shape into five categories; flat, convex 

elliptic, concave elliptic, convex cylindrical, concave cylindrical. This algorithm is applied on the 

estimated curvature of border voxels between two adjacent supervoxels. In the case that the 

estimated surface shape based on two adjacent supervoxels is non-flat, it is considered as 

disconnected. From the low-curvature regions obtained as above, the likelihood of a specific region 

given each particular primitive shape is estimated. The likelihood is estimated according to the 

similarity between the point normals and the corresponding primitive normals.  

3. Oversegmentation as a Preprocessing Step 

Many segmentation algorithm perform oversegmentation to superpixels or supervoxels as a 

preprocessing step (Gupta, Arbeláez and Malik, 2013). The introduction of a low-level 

preprocessing step to oversegment images into superpixels – relatively small regions whose 

boundaries agree with those of the semantic entities in the scene – has enabled advances in 

segmentation by reducing the number of elements to be labeled from hundreds of thousands, or 

millions, to a just few hundred (Simari, Picciau and De Floriani, 2014). 

 In (Papon et al., 2013), a method for segmentation of point clouds into supervoxels is proposed. 

The method is named Voxel Cloud Connectivity Segmentation (VCCS). The method is based on k-

means clustering, which is the idea originally used in SLIC (Achanta et al., 2012) – one of the most 

popular superpixel methods for RGB images. The space of the input point cloud is represented by 

voxels of size Rvoxel. The algorithm begins by selecting a number of seed points which will be used 

to initialize the supervoxels. In order to do this, the space is divided into a voxelized grid, where the 

size Rseed  of the cells in this grid is significantly larger than Rvoxel. Initial candidates for seeding are 

chosen by selecting the voxel in the cloud nearest to the center of each occupied seeding voxel. The 

seeds are shifted to the connected voxel within the search volume which has the smallest gradient in 

the search volume, where the gradient is computed as the average absolute difference between the 

query voxel and the neighboring voxels in CIELAB color space. Once the seed voxels have been 

selected, the supervoxel feature vector is initialized by finding the center of the seed voxel in 

feature space and connected neighbors within 2 voxels. VCCS supervoxels are then detected as 

clusters in a 39 dimensional feature space, where feature vector is composed of the following 

elements: spatial coordinates x, y, and z, color in CIELab space and 33 elements of FPFH (See 

ARP3D TR2). The distance in this feature space is defined by 
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where Ds is the Euclidean distance in the point cloud 3D space, Dc is the Euclidean distance in 

CIELab space Df  is calculated using the Histogram Intersection Kernel and m is a normalization 

constant. Constants ,  and control the influence of color, spatial distance and geometric 

similarity, respectively, in the clustering. The clustering is performed using a local k-means 

clustering, as proposed in (Achanta et al., 2012), with the significant difference that connectivity 

and flow are considered when assigning pixels to a cluster. The process is as follows: beginning at 

the voxel nearest the cluster center, for all its adjacent voxels the distance D to the supervoxel 

center is computed. If the distance is the smallest this voxel has seen, its label is set and its 

neighbors which are further from the center are added to a search queue for this label. Then the next 

supervoxel is processed in the same way, so that each level outwards from the center is considered 

at the same time for all supervoxels. The process continues iteratively outwards until the edge of the 

search volume is reached for each supervoxel, or there are no more neighbors to check. Once the 

search of all supervoxel adjacency graphs has concluded,  the centers of each supervoxel cluster are 

updated by taking the mean of all its constituents. This is done iteratively; either until the cluster 

centers stabilize, or for a fixed number of iterations. The source code of the proposed method is 

made available by the authors within PCL. 

A similar approach is proposed in (Yang et al., 2015). This approach is a more direct adaptation of 

the SLIC algorithm for RGB-D images. In contrast to the algorithm proposed in (Papon et al., 

2013), which can be applied to general point clouds, the approach proposed in (Yang et al., 2015) 

requires organized point cloud i.e. RGB-D images. Nothing substantially new regarding superpixel 

detection is achieved in comparison to (Papon et al., 2013). 

In (Simari, Picciau and De Floriani, 2014), an oversegmentation algorithm for triangular (not 

colored) meshes is proposed. The segments this algorithm produces are called by the authors 

superfacets. Analogously to other k-means style algorithms, like SLIC, the proposed algorithm can 

be subdivided into three high-level steps: (i) initialization, (ii) update of segment centers and (iii) 

classification of triangles, where steps (ii) and (iii) are alternately repeated until convergence. 

Three initialization methods are proposed. The first is an iterative farthest point strategy. The first 

region center is placed at the triangle whose centroid is closest to the centroid of the whole mesh. 

Then, each subsequent center is added at the triangle with maximum Euclidean distance to the 

nearest already placed center. Another initialization method is the following: starting from the 

triangle closest to the mesh centroid the classification step is performed until the triangle being 

processed is at a distance from the initial seed greater than a user defined parameters. When this 

distance is exceeded, this triangle is used to begin a new region. The third initialization method is 

to subdivide the 3D space in which the mesh is embedded into a regular 3D grid based on the 

desired radius. When all the triangles have been assigned to some superfacet, the position of each 

superfacet center is computed as follows. For each superfacet, the Euclidean area-weighted mean 

of all triangle centroids belonging to that superfacet is computed and then the new center is 

designated to be the triangle closest to said mean. If no center has changed, the algorithm 

terminates. Otherwise, the classification step is performed. The classification step proceeds as 

follows. For each triangle, its shortest-path distance along the face graph of the mesh to the nearest 

superfacet center is computed. The distance metric used in this process is a weighted sum of an 

approximate geodesic distance and the normalized dihedral angle at the shared edge of two 

neighboring triangles weighted by a factor which increases the distance in the case of concavity.  
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An adaptation of the SLIC algorithm  to 3D scalar fields defined over the vertices of a tetrahedral 

mesh considering tetrahedra rather than pixels is proposed in (Picciau et al., 2015). The source 

code of the proposed method is made publically available by the authors. 

The approach proposed in (Stückler and Behnke, 2014) represents a point cloud, obtained by 

registration of multiple colored point clouds, by a multi-resolution surfel map. This map is based on 

octree. In each node of the tree across all resolutions (voxel sizes), statistics on the joint spatial and 

color distribution of the points within its volume is stored. This data related to each octree node is 

named a surfel. The distribution is approximated with sample mean  and covariance of the data, i.e., 

the data is modeled as normally distributed in a node's volume. Since the method is intended for  

building of maps of scenes and objects from all perspectives, multiple distinct surfaces may be 

contained within a node's volume. Hence, multiple surfels are maintained in a node that are visible 

from several view directions. Up to six orthogonal view directions aligned with the axes of the map 

reference frame are considered. When adding a new point to the map, the view direction onto the 

point is determined and associated with the surfel belonging to the most similar view direction. The 

source code of the proposed method is made publically available by the authors at 

https://code.google.com/archive/p/mrsmap/. 

4. Semantic Segmentation 

Segmenting of RGB-D images into regions classified in one of the following four structural classes:  

 ground, 

 permanent structures (such as walls, ceilings and columns), 

 large furniture (such as tables, dressers, and counters) and 

 props (easily movable objects). 

is proposed in (Silberman et al., 2012), where an approach based on identification of support 

relationships is presented. The classification process starts by aligning point cloud to principal 

directions (vanishing points) detected using straight line segments in the image. Then, potential 

wall, floor, support, and ceiling planes are detected using a RANSAC procedure. To determine 

which image pixels correspond to each plane, the graph cuts segmentation with alpha expansion is 

applied. An initial segmentation is performed by the watershed algorithm applied to Pb boundaries, 

proposed in (Arbeleaz, 2006). This oversegmentation is forced to be consistent with the 3D plane 

regions previously detected using RANSAC, which primarily helps to avoid regions that span wall 

boundaries with faint intensity edges. The segments obtained by oversegmentation are then 

segmented into objects and dominant surfaces by a hierarchical segmentation algorithm proposed in 

(Hoiem, Efros  and Hebert, 2011). Regions with minimum boundary strength are iteratively merged 

until the minimum cost reaches a given threshold. Boundary strengths are predicted by a trained 

boosted decision tree classifier which uses RGB and 3D features. These proposed 3D features 

encode regions corresponding to different planes or having different surface orientations or depth 

differences are likely to belong to different objects. Given an image split into regions representing 

objects or surfaces, the support relationship between these regions are determined. The basic 

assumption made the proposed model is that every region is either (a) supported by a region visible 

in the image plane, (b) supported by an object not visible in the image plane or (c) requires no 

support indicating that the region is the ground itself. Two types of support relations between two 
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regions are considered: (i) one region is supported by the other from below or (ii) the region is 

supported by the other region from behind. The support relations are determined together with the 

membership of regions to one of the four aforementioned structural classes are determined 

simultaneously by a maximum a posteriori (MAP) process, where likelihood that one region 

supports another and the likelihood that a particular region belongs to a particular structural class 

are computed by two logistic regression classifiers. The source code of the proposed method is 

made publically available by the authors at http://cs.nyu.edu/~silberman/code.html. 

In (Gupta, Arbeláez and Malik, 2013), the problem of semantic segmentation into ground, 

structure, furniture and props is also considered. The segments obtained by the approach described 

in Section 1 are classified to the aforementioned classes by a SVM and a random forest classifier. 

The features which are used as classification cues are the angle with respect to gravity, absolute 

orientation in space, fraction of a segment that is vertical, fraction of the segment that is horizontal, 

the minimum and maximum height above ground, mean and median height of the horizontal part of 

the segment, the size of the 3D bounding rectangle, the surface area - total area, vertical area, 

horizontal area facing up, horizontal area facing down, if the segment is clipped by the image and 

what fraction of the convex hull is occluded, planarity of the segment (estimated by the error in the 

plane fitting), average strength of local geometric gradients inside the region, on the boundary of 

the region and outside the region, average orientation of patches in the regions around the segment. 

In addition to these generic features, the following category specific features are also used: 

histograms of vector quantized color SIFT (van de Sande, Gevers and Snoek, 2010) as the 

appearance features, histograms of geocentric textons (vector quantized words in the joint 2-

dimensional space of height from the ground and local angle with the gravity direction) as shape 

features. 

The same segmentation problem is addressed in (Cadena and Kosecka, 2013; Cadena and 

Kosecka, 2015), where a solution based on conditional random fields and minimum spanning tree 

is proposed. The proposed approach is evaluated using NYUD2 dataset (see Section 7). 

In (Schulz, Nico and Behnke, 2015) the problem of semantic segmentation into the four classes 

introduced by (Silberman et al., 2012) using CNN is proposed. The problem with missing scale 

invariance in CNN is addressed. The neural network is trained on image patches with a size chosen 

proportional to the depth of the patch center. Since training is scale invariant, smaller models can be 

used and the training data can be used more efficiently. A sampling scheme which covers the image 

with overlapping patches of depth-adjusted size is proposed. Thus, closer image regions are 

processed at a large scale, while far-away regions are processed at a small scale. This automatic 

adjustment is more efficient than sliding windows, because the scale is chosen automatically. In 

contrast to a multi-scale sliding window, the scale adjustments in the proposed approach are 

continuous. Height above ground is used as an additional input to the CNN. The proposed approach 

is evaluated using NYUD2 dataset (see Section 7). 

5. Segmentation into Parts 

In (Schoeler, Papon and Wörgötter, 2015), a bottom-up method for segmenting 3D point clouds 

into functional parts is proposed. The method uses local concavities as an indicator for inter-part 

boundaries. The algorithm begins by oversegmenting the input point cloud into supervoxels using 

http://cs.nyu.edu/~silberman/code.html
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VCCS (Papon et al., 2013) and creating supervoxel adjacency graph, whose nodes correspond to 

supervoxels and edges represent neighboring relations between supervoxels. The classification 

proposed for the LCCP-algorithm (Stein et al., 2014) is used to label edges in the graph as either 

convex or concave. The adjacency graph is converted into a Euclidean Edge Cloud (EEC), where 

each point represents an edge in the adjacency graph. The EEC is then partitioned by a greedy 

procedure, starting from the entire point cloud, representing the initial segment, which is then 

recursively segmented by partitioning each segment using the locally constrained directional 

weighted RANSAC. This RANSAC-based procedure performs random sampling of an EEC 

segment searching for the optimal partitioning plane, which maximizes the following score 
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where  is the angle between the normals of the neighboring supervoxels connected by the edge 

represented by the point i in ECC, thresh is a user defined parameter set to 10 and  is the 

Heaviside step function. The weight ti is computed by 
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where di is the unit vector connecting the centroid of the neighboring supervoxels and sm is the 

normal of the partitioning plane. Cluster n

mP  is created by Euclidean clustering of all points lying on 

the partitioning plane within a user defined tolerance. This whole cutting procedure is repeated 

recursively on the newly generated segments and terminates if no cuts can be found which exceed 

the minimum score Smin or if the segment consists of less than Nmin supervoxels. The proposed 

approach is evaluated using the Princeton Object Segmentation Benchmark (Chen, Golovinskiy and 

Funkhouser, 2009). The method’s source code will be freely distrib1uted as part of the Point Cloud 

Library (PCL) 

The segmentation method proposed in (Stein et al., 2014), described in Section 1, is applied for 

segmentation of objects into body and handle. The handle detection is useful for robotic grasping. 

6. Performance Measures 

Four performance measures for determining the quality of (2D) segmentation results are mentioned 

in (Arbelaez et al., 2011): Variation of Information (VI); Probabilistic Rand Index (PRI),  

Segmentation Covering (C) and Precision-Recall on Boundaries. 

1. Variation of Information (Meilǎ, 2005) 
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It measures the distance between two segmentations in terms of the information difference between 

them. 

 𝑉𝐼(𝑆, 𝑆′) = 𝐻(𝑆) + 𝐻(𝑆′) − 2𝐼(𝑆, 𝑆′) (1) 

where H and I represent respectively the entropies and mutual information between the two data 

clusterings S and S’ (or test and ground truth segmentations). S and S’ represent cluster sets of the 

same data set D, where 𝑆 = {𝑆1, 𝑆2, 𝑆3, . . 𝑆𝐶} with cluster sizes 𝑛𝑘 and 𝑆′ = {𝑆1
′ , 𝑆2

′ , 𝑆3
′ …𝑆𝐶′

′ } with 

cluster sizes 𝑛𝑘′
′ . The total number of points in D is 𝑛𝑡𝑜𝑡. H and I  are defined by: 

 𝐻(𝑆) = −∑
𝑛𝑘

𝑛𝑡𝑜𝑡
∙ log⁡(

𝑛𝑘

𝑛𝑡𝑜𝑡
)𝐶

𝑘=1 ⁡ (2) 

 𝐼(𝑆, 𝑆′) = ∑ ∑
𝑛𝑘,𝑘′

𝑛𝑡𝑜𝑡
∙ log⁡(

𝑛𝑘,𝑘′

𝑛𝑡𝑜𝑡

𝑛𝑘

𝑛𝑡𝑜𝑡

𝑛𝑘′

𝑛𝑡𝑜𝑡
)𝐶′

𝑘′=1
𝐶
𝑘=1  (3) 

where 𝑛𝑘,𝑘′ represents the number of points in the intersection of clusters Sk of S  and 𝑆𝑘′
′  of S’ 

 𝑛𝑘,𝑘′ = |𝑆𝑘 ∩ 𝑆𝑘
′ |  (4) 

The perceptual meaning and applicability of VI in the presence of several ground-truth 

segmentations is unclear. 

2. Rand Index (Rand, 1971) 

The Rand index compares the compatibility of assignments between pairs of elements in the 

clusters. The Rand Index between test and ground truth segmentations S and G is given by the sum 

of the number of pairs of pixels that have the same label in S and G and those that have different 

labels in both segmentations, divided by the total number of pairs of pixels (Rand, 1971;  

Unnikrishnan and Hebert, 2005). This gives a measure of similarity with value ranging from 0 when 

the two segmentations have no similarities (i.e. when one consists of a single cluster and the other 

consists only of clusters containing single points) to 1 when the segmentations are identical. 

Variants of the Rand Index have been proposed for dealing with the case of multiple ground-truth 

segmentations (Pantofaru and Hebert, 2005; Unnikrishnan and Hebert, 2005; Unnikrishnan et al., 

2007) 

 Given a set of ground-truth segmentations {Gk}, the Probabilistic Rand Index is defined as: 

 𝑃𝑅𝐼(𝑆, {𝐺𝑘}) =
1

𝑇
∑ [𝑐𝑖𝑗𝑝𝑖𝑗 + (1 − 𝑐𝑖𝑗)(1 − 𝑝𝑖𝑗)]
⁡
𝑖<𝑗  (5) 

where cij is the event that pixels i and j have the same label and pij its probability. T is the total 

number of pixel pairs. Using the sample mean to estimate pij, PRI amounts to averaging the Rand 

Index among different ground-truth segmentations. The PRI has been reported to suffer from a 

small dynamic range (Pantofaru, and Hebert, 2005; Unnikrishnan et al., 2007) and it often has 

similar values across images and algorithms. The PRI index is on a scale of 0 to 1, but there is no 

expected value for a given segmentation. The PRI score may be compared to the score of another 

segmentation of the same image, but there is no information as to whether or not the difference 

between the two scores is relevant or not. In (Pantofaru, and Hebert, 2005; Unnikrishnan et al., 

2007), this drawback is addressed by normalization with an empirical estimation of its expected 

value (ie. Normalized PRI). 
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3. Segmentation Covering 

In order to evaluate the pixel-wise classification task in recognition, the overlap between two 

regions R and R’ is used (Everingham et al., 2005; Everingham et al., 2015; Malisiewicz and Efros, 

2007) and is defined as: 

 𝑂(𝑅, 𝑅′) =
|𝑅∩𝑅′|

|𝑅∪𝑅′|
 (6) 

The covering of a segmentation S by a segmentation S’ is defined as (Arbelaez et al. 2011): 

 𝐶(𝑆′ → 𝑆) = ⁡
1

𝑁
∑ |𝑅| ∙ max𝑅′∈𝑆′ 𝑂(𝑅, 𝑅′)𝑅∈𝑆  (7) 

where N is the total number of pixels in the image. In a similar manner, the covering of a 

segmentation S by a family of ground-truth segmentations {Gi} is defined by first covering S 

separately with each ground-truth Gi, and then averaging over the different ground truths. 

4. Precision-Recall on Boundaries (Martin et al. 2004) 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8) 

 𝑅 = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 

where  

P – precision, 

R – recall, 

TP – true positives, 

FP – false positives, 

FN – false negatives. 

In probabilistic terms, precision is the probability that the detector’s signal is valid, and recall is the 

probability that the ground truth data was detected. The precision and recall measures can be 

particularly meaningful in the context of boundary detection when applications that make use of 

boundary maps, such as stereo or object recognition, are considered. It is reasonable to characterize 

higher level processing in terms of how much true signal is required to succeed R (recall), and how 

much noise can be tolerated P (precision). A particular application can define a relative cost  

between these quantities, which focuses attention at a specific point on the precision-recall curve.  

The F-measure defined as 

 𝐹 =
𝑃∙𝑅

(𝛼𝑅+(1−𝛼)𝑃)
 (10) 

captures this trade off as the weighted harmonic mean of P and R. The location of the maximum F-

measure along the curve provides the optimal detector threshold for the application given , which 

is set to 0.5 in their experiments.  

If a set of ground truth boundary maps exist, the obtained boundary map is compared separately 

with each ground truth map in turn. Only the pixels in the obtained boundary map that match no 

ground truth boundary are counted as false positives. The hit rate is simply averaged over the 
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different ground truth maps. Hence, to achieve perfect recall the obtained boundary map must 

explain all of the ground truth data. In this way, estimating precision and recall matches as closely 

as possible the intuitions one would have if scoring the outputs visually.  

The precision-recall curve is a rich descriptor of performance. If a single performance measure or 

summary score is required, two measures can be used: (i) precision and recall can be combined with 

the F-measure to provide the best/maximal/global F-measure (with   = 0.5); (ii) the average 

precision (AP) on the full recall range (equivalent to the area under the P- R curve). 

In addition to the aforementioned four measures, over-segmentation and under-segmentation 

score are proposed in (Richtsfeld et al., 2012).  

7. Benchmark Datasets 

Probably the most popular benchmark dataset for RGB-D image segmentation is NYUD2 dataset 

presented in (Silberman et al., 2012). The dataset is comprised of video sequences from a variety of 

indoor scenes as recorded by both the RGB and Depth cameras from the Microsoft Kinect. It 

features: 

- 1449 densely labeled pairs of aligned RGB and depth images (hand selected from 435 103 

video frames, to ensure diverse scene content and lack of similarity to other frames), 

gathered from a wide range of commercial and residential buildings in three different US 

cities; 

- 464 different indoor scenes across 26 scene classes; 

- 35 064 distinct objects, spanning 894 different classes; 

- Each object is labeled with a class and an instance number (cup1, cup2, cup3, etc); 

- For each of the 1449 images, support annotations were manually added. Each image’s 

support annotations consists of a set of 3-tuples: [Ri, Rj, type] where Ri is the region ID of 

the supported object, Rj is the region ID of the supporting object and type indicates 

whether the support is from below (e.g. cup on a table) or from behind (e.g. picture on a 

wall); 

- 407 024 new unlabeled frames. 

The dataset is publically available at http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html.  

Recently, a larger dataset Scene Understanding Benchmark Suite – SUN RGB-D (Song et al., 

2015) is made available to the scientific community. It consists of: 

- 1449 images from the NYUD2; 

- 554 manually selected realistic scene images from the Berkeley B3DO Dataset (Janoch et 

al., 2011) (the images were captured using Kinect v1); 

- manually selected 3,389 distinguished frames without significant motion blur from the 

SUN3D videos (Xiao et al., 2013)  (the images were captured using Asus Xtion);  

- 3784 images captured using Kinect v2; 

- 1159 images captured using Intel RealSense. 

http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
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The whole dataset is densely annotated and includes 146,617 2D polygons and 64,595 3D bounding 

boxes with accurate object orientations, as well as a 3D room layout and scene category for each 

image. In total, there are 47 scene categories and about 800 object categories. 

Since the data is obtained using different sensors, a proposed robust algorithm for depth map 

integration from multiple RGB-D frames is used to improve the depth maps.  

Any of the 6 following tasks can be tested using the benchmark: 

- Scene Categorization 

- Semantic Segmentation 

- Object Detection (2D and 3D) 

- Object Orientation 

- Room Layout Estimation 

The dataset is publically available at http://rgbd.cs.princeton.edu/.  

Berkeley 3-D Object Dataset – B3DO (Janoch et al., 2011) is publically available at 

http://kinectdata.com/. The size of the dataset is not fixed and will continue growing with crowd-

sourced submissions. The first release of the dataset contains:  

- 849 images taken in 75 different scenes; 

- over 50 different object classes are represented. 

SUN3D database (Xiao et al., 2013) is a large-scale RGB-D video database with camera poses and 

object labels, capturing the full 3D extent of many places. It consists of RGB-D images, camera 

poses, object segmentations, and point clouds registered into a global coordinate frame. It is 

publically available at http://sun3d.cs.princeton.edu/.  

The Object Segmentation Database – OSD (Richtsfeld et al., 2012) provides 111 RGBD data in 6 

subcategories to enable evaluation of object segmentation approaches. It is publically available at 

http://users.acin.tuwien.ac.at/arichtsfeld/?site=4.  

Willow Garage provides a RGB-D dataset for an Object Recognition Challenge. The dataset 

consists mainly of simple freestanding objects for evaluation of object segmentation approaches as 

well as parametric surface fitting and provide exact ground truth for all objects in this dataset. It is 

publically available at http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/willow/.  

RGB-D Object Dataset (Lai et al., 2011) is a large-scale, hierarchical multi-view object dataset 

collected using an RGB-D camera. The dataset contains 300 objects organized into 51 categories. It 

is publically available at http://rgbd-dataset.cs.washington.edu/dataset.html.  

Cornell-RGBD-Dataset has 24 labeled office scene point clouds and 28 labeled home scene point 

clouds. It is publically available at http://pr.cs.cornell.edu/sceneunderstanding/data/data.php. 

In (Chen, Golovinskiy and Funkhouser, 2009), a benchmark dataset for segmentation of 3D 

meshes into parts, named Princeton Object Segmentation Benchmark, is presented. 

 

http://rgbd.cs.princeton.edu/
http://kinectdata.com/
http://sun3d.cs.princeton.edu/
http://users.acin.tuwien.ac.at/arichtsfeld/?site=4
http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/willow/
http://rgbd-dataset.cs.washington.edu/dataset.html
http://pr.cs.cornell.edu/sceneunderstanding/data/data.php
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